
DOI: 10.1007/s10955-005-8321-2
Journal of Statistical Physics, Vol. 121, Nos. 1/2, October 2005 (© 2005)

Asymptotic Analysis of Lattice Boltzmann Boundary
Conditions
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In this article, we use a general method for the analysis of finite difference
schemes to investigate lattice Boltzmann algorithms for Navier–Stokes prob-
lems with Dirichlet boundary conditions. Several link based boundary condi-
tions for commonly used lattice Boltzmann BGK models are considered. With
our method, the accuracy of the algorithms can be exactly predicted. Moreover,
the analytical results can be used to construct new algorithms which is demon-
strated with a corrected bounce back rule that requires only local evaluations
but still yields second order accuracy for the velocity. The analysis is applicable
to general geometries and instationary flows.

KEY WORDS: lattice Boltzmann equation; bounce back rule; asymptotic anal-
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1. INTRODUCTION

Among the numerical approximation methods for the incompressible
Navier–Stokes equation, the lattice Boltzmann method seems to be partic-
ular because it relies on an indirect approach to continuum equations via
kinetic theory. Mathematically, the kinetic equation is asymptotically con-
nected to the Navier–Stokes system by a singular limit. A consequence of
this somewhat involved relation is that numerical approximations on the
kinetic level influence the approximate Navier–Stokes solution in a way
which is difficult to predict. For example, if Dirichlet boundary conditions
are to be implemented, one cannot prescribe directly the flow velocity at
boundary nodes but one has to set certain variables in the kinetic equation
in such a way that the average velocity satisfies the required conditions.
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Typically, the required number of kinetic conditions exceeds the available
conditions from the Navier–Stokes problems. This indicates already that
the kinetic conditions have to be chosen carefully in order to avoid the
appearance of extra conditions on the Navier–Stokes level which would
render the problem ill posed (leading to an unwanted behavior on the grid
scale like boundary layers, oscillations etc.).

In order to decide whether a specific lattice Boltzmann algorithm
leads to the desired Navier–Stokes boundary conditions, we propose a
method which is based on a straightforward asymptotic analysis and
which is generally applicable to any finite difference method.(1) In fact,
such expansions are widely used in the theory of ordinary differential
equations and also frequently applied to PDEs in connection with Rich-
ardson’s extrapolation or deferred correction methods (see ref. 1 for a
review). In other words, lattice Boltzmann algorithms can be fully ana-
lyzed with standard tools so that the approach is only special because it
involves a singular asymptotic limit. But even this aspect is not uncom-
mon. It appears, for example, as central idea in relaxation schemes which
originated in the work(2) and which shares several features with lattice
Boltzmann algorithms.

With our approach, we divert from the Chapman Enskog analy-
sis which is usually taken as basis for the analysis of lattice Boltzmann
schemes (see for example refs. 3–8). Compared to the Chapman Enskog
approach which is usually based on the resolution of two time scales (the
diffusive and the acoustic time scale), we restrict to the diffusive scal-
ing only. In this way, we can investigate directly the relation between the
lattice Boltzmann method and the incompressible Navier–Stokes equation
which is our main goal (note that with this point of view, acoustic effects
are considered as numerical errors of the lattice Boltzmann method).

The technical advantages of the advocated method are twofold. First,
only a single time scale expansion is necessary and it is simpler than
a two-scale expansion because the expansion coefficients and the corre-
sponding equations depend on one variable fewer. Second, the expansion
coefficients depend directly on the aspired solution of the incompressible
Navier–Stokes problem and not on the solution of a different problem
(the compressible equation). Having this direct dependence, it is straight
forward to relate the numerical solution to the exact solution, for example,
to obtain error estimates.

An obvious difference between the classical Chapman–Enskog analy-
sis and our approach here is the relation �t =�x2 between the scaled time
and space step which deviates from �t =�x in the Chapman–Enskog case.
This difference can easily be traced back to the choice of the time scale in
the two approaches. To illustrate this point, let us think of a flow through
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a channel of length L with typical velocity U . If the grid spacing is δx, we
generally assume that �x =δx/L is sufficiently small so that the grid reso-
lution is good. In the classical scaling, velocities are measured in terms of
a typical particle speed c which gives rise to the time unit T = L/c. The
relation δx =cδt between space and time step then translates into �x =�t

for the scaled grid parameters �x = δx/L and �t = δt/T . We stress that
the time unit T is natural for the investigation of acoustic effects. If low
Mach number flows are considered, the typical flow velocity U must be
small compared to c. More precisely, one needs U/c ∼ �x to approach
the incompressible limit for �x →0. Consequently, the dimensionless time
required for a volume of fluid to traverse the channel is proportional to
L/(UT )=O(1/�x) and thus diverges for �x → 0 while the flow velocity
tends to zero. Exactly to avoid this technical inconvenience, we divert with
our scaling from the classical choice.

Specifically, we measure velocities in units of U and, accordingly, time
in units of L/U . In this scaling, the flow velocity is of order one and
a volume of fluid needs always the same non-dimensional time to tra-
verse the channel, independent of �x. The relation δx = cδt transforms
into �x =c�t/U where �t is now δt scaled by L/U . The low Mach-num-
ber assumption U/c=�x then leads to �t =�x2. Note however, that �t

differs in the two approaches by a different scaling of the time step δt .
We remark that the direct asymptotic analysis using the diffusive

scaling has first been considered by Sone in ref. 9 and earlier works
for the classical Boltzmann equation and has been applied to lattice
Boltzmann in refs. 10–13. Note, however, that knowledge about these
kinetic methods is not required in our approach. In the same spirit, we
do not introduce other physical non-dimensional parameters like the Mach
and Knudsen number (which would both be proportional to our non-
dimensional grid spacing h = �x). As far as the treatment of bound-
ary conditions is concerned, we will comment on the connections of our
method to the approach in refs. 15, 14, 22 which uses Chapman–Enskog
analysis.

The introduction is concluded with an outline of the article. In
Section 2 we specify the basic lattice Boltzmann algorithms with bounce
back rule which are used to demonstrate our method. The detailed asymp-
totic analysis is given in Section 3. Finally, we use the information
obtained from the asymptotic analysis to improve the bounce back rule
and to investigate other existing link-based boundary conditions.(14,15,18,22)
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2. THE LATTICE BOLTZMANN ALGORITHM ON DOMAINS WITH

BOUNDARIES

We consider the incompressible Navier–Stokes equation on a domain
� ⊂ R

d with initial and Dirichlet boundary values. Our aim is to find
numerical approximations of the fields u: [0, T ] × � → R

d and p: [0, T ] ×
�→R, which satisfy

∇·u=0, ∂tu+ (u · ∇)u+∇p =ν∇2u+G, u|t=0 =ψ (1)

with

u(t,x)=φ(t,x), t ∈ [0, T ], x ∈ ∂� (2)

where ψ,φ and G are given functions, functions ψ: R
d → R

d and G :
[0, T ] × R

d → R
d represent a divergence free initial velocity field and a

force term respectively.
We assume (1) and (2) to be in non-dimensional form, i.e. the domain

� is scaled by a typical length (say the diameter is equal to one) and
the data of the problem (φ,ψ,G) is scaled in such a way that the typical
velocity u is also of order one. Defining the time scale using the velocity
and space scale as indicated in the introduction, the viscosity parameter ν

is actually the inverse of the Reynolds number.
Lattice Boltzmann methods for the problem (1) are based on a sim-

plified microscopic model of the fluid in which particles travel with dis-
crete velocities in the directions c0, . . . , cb over a regular spatial lattice in
such a way that their average velocity approximately satisfies (1). The lat-
tice should be compatible with the velocities in the sense that neighboring
nodes are connected by vectors hci where h > 0 is a small dimensionless
parameter which regulates the grid resolution. The basic quantities f̂i (n,j)

denote the mass densities of particles having discrete velocity ci at the lat-
tice node labeled with j ∈Z

d (corresponding to xj (h)=hj ) and time step
n∈N0 (corresponding to tn(h)=h2n). Given the particle mass densities f̂i

for the different velocities, the total mass density ρ̂ is simply the sum

ρ̂(n,j)=
∑

i

f̂i (n,j). (3)

Since in our setup, ρ̂ will always be close to one (incompressible
flow) the values f̂i approximately form a discrete probability distribution
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so that

û(n,j)=
∑

i

f̂i (n,j)ci (4)

is essentially the average particle velocity (in our notation, a hat super-
script indicates a discrete function of the grid labels). As a result of our
analysis, we will see that the field û approximates the scaled Navier–Stokes
solution hu.

We remark that time and space variables are non-dimensionalized
using the same scales as in the Navier–Stokes problem (1). This usage dif-
fers slightly from the classical approach but has certain advantages if one
wants to investigate the connection of the lattice Boltzmann method to
the incompressible Navier–Stokes equation in the limit h → 0 (see also the
comments in the introduction).

The evolution of the particles consists of two phases, a transport step
and a collision and forcing step. The latter simulates a spatially local par-
ticle interaction at the lattice nodes and the effect of the force field on the
particles. It has the form

f̂ c
i (n,j)= f̂i (n,j)+Ci [f̂ ](n,j)+ ĝi (n,j) (5)

where the so-called collision operator is of relaxation type

Ci [f̂ ](n,j)= 1
τ

(f
eq
i (ρ̂(n,j), û(n,j))− f̂i (n,j)), τ = 1

2
+3ν

and ρ̂ and û depend on f̂ according to (3), and (4). As equilibrium dis-
tribution function we use

f
eq
i (ρ,u)= [ρ +3u · ci + 9

2
(u · ci )2 − 3

2
|u|2]f ∗

i

which works in connection with the D2Q9, D3Q15, D3Q19, and D3Q27
models (for details see ref. 15). In our context, they differ only in the
underlying velocity set and the weights f ∗

i =f
eq
i (1,0) defining the equilib-

rium distribution. The function ĝi in (5) models the influence of the force
term. Its relation to G in (1) is

ĝi (n,j)=3h3f ∗
i ci ·G(tn(h),xj (h)). (6)
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We remark that only by scaling G with h3 we can ensure that, in
the limit h→ 0, the force term acts on the velocity according to Eq. (1).
The physical reason is that in a time step of length h2, the Navier–Stokes
velocity u changes proportional to h2G and since û ≈ hu, the average lat-
tice Boltzmann velocity only changes proportional to hh2G which explains
the factor h3.

During collision, the original particle distribution function f̂i trans-
forms into the post-collisional state f̂ c

i . After that, the particles simply
move undisturbed with their velocities to the neighboring lattice sites. This
transport step is described by the update rule

f̂i (n+1,j + ci )= f̂ c
i (n,j). (7)

Since the particles travel a distance h in a single time step of size h2,
the associated particle speed is actually h/h2 = 1/h. This reflects the low
Mach number assumption in our scaling where the flow speed is scaled to
one so that the quotient between flow and particle speed can only become
small if the particle speed diverges.

Obviously the update rule (7) determines f̂i (n+ 1,j) only at interior
nodes xj (h) whose neighbors in all directions are also in the compu-
tational domain. The labels of the remaining nodes (so-called boundary
nodes) are collected in the set Jbdr(h). They require a modified update
rule. For example, if node j ∈ Jbdr(h) has a missing neighbor in direc-
tion −ci , then the population f̂i (n+ 1,j) cannot be filled with the usual
update rule (7). Classically, the bounce back rule is used to define these
populations

f̂i (n+1,j)= f̂ b
i∗(n,j)= f̂ c

i∗(n,j)+6hf ∗
i ci ·φ(tn,xj i ) (8)

which is employed for j ∈Jbdr(h) and the incoming velocities with indices
in

Vj ={i : xj − hci �∈�}.

The velocity index i∗ is defined by ci∗ =−ci . The boundary value φ
is evaluated at the point xj i =xj −hqj ici ∈∂� where qj i ∈ [0,1) represents
the distance to the boundary along direction ci∗ =−ci in units of |ci | (see
Fig. 1).

To start the evolution, we use the initialization proposed in ref. 18.

f̂i (0,j)=f
eq
i (1+3h2p(0,xj ), hψ(xj ))−3h2τci ·∇(ci ·ψ)(xj ) (9)
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Fig. 1. Intersection of links and boundary give rise to xj i ∈ ∂� (color online).

where p(0,x) is the pressure corresponding to the initial velocity field ψ .
It is obtained by solving the Poisson equation

�p =−∇· (ψ ·∇ψ)+∇·G.

3. ASYMPTOTIC ANALYSIS

From an abstract point of view, the complete lattice Boltzmann algo-
rithm presented in the previous section constitutes a finite set of equations
for the unique determination of the quantities f̂i (n,j). Since these equa-
tions depend on an additional small parameter h, it is natural to use tools
from asymptotic analysis to understand the behavior of f̂i (n,j). In partic-
ular, we want to know how well the average velocity û approximates the
solution of the Navier–Stokes problem (1). An answer to this question is
obtained once we understand how the coefficients in the expansion

û(n,j)=u0(tn,xj )+hu1(tn,xj )+h2u2(tn,xj )+· · ·

relate to the solution of (1). In fact, it will turn out that u0 = 0 and u1
is the solution of the Navier–Stokes equation (1), while u2,u3, . . . , can be
viewed as contributions to the velocity error.

More generally, we try to express the lattice Boltzmann variables
through a regular expansion

f̂i (n,j)=f
(0)
i (tn,xj )+hf

(1)
i (tn,xj )+h2f

(2)
i (tn,xj )+· · · (10)

with smooth and h independent functions f
(k)
i . Inserting the expansion

into all equations of the lattice Boltzmann method, performing Taylor
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expansions and equating the expressions appearing in different orders of h

separately to zero, a set of conditions on the expansion coefficients arises
which can be used to determine the functions f

(k)
i . The expansion coeffi-

cients of the moments

ρm =
∑

i

f
(m)
i , um =

∑

i

f
(m)
i ci

then follow from our knowledge of f (m). The resulting explicit informa-
tion about the h dependence of density and average velocity ρ̂, û consti-
tutes the main difference to the Chapman–Enskog analysis where ρ̂ and
û are approximately described through the solutions of differential equa-
tions which carry h as a parameter. In particular, with (10) we can derive
the relation between the numerical values ρ̂, û and the solution of the
incompressible Navier–Stokes equation while the Chapman–Enskog anal-
ysis establishes a link to some intermediate compressible Navier–Stokes
equation.

Formally, expansion (10) differs from the Chapman–Enskog expan-
sion in that the mass and velocity averages of the expansion coefficients
f (k) with k �1 are generally non-zero. Also, the Chapman–Enskog expan-
sion usually employs an additional time scale which is relevant for ana-
lyzing acoustic effects. In our approach, acoustic effects are also recovered
but they typically appear only in the higher order terms (for example,
u3 is not divergence free which reflects the weak compressibility of the
numerical solution). In cases where the lattice Boltzmann solution con-
tains acoustic effects at leading order (for example, in connection with
a poor initialization), our single scale expansion will fail because sound
waves imply very large time derivatives in our diffusive scaling which ulti-
mately lead to singular behavior for h→0.

Hence, expansion (10) can only describe the regular part of the LB
solution f̂i (n,j) because of our smoothness assumption on the coeffi-
cients. If the numerical solution exhibits fast oscillations (sound waves) or
strong gradients at the boundaries (Knudsen layers) the expansion (10)
will fail at a certain order because the strong derivatives (proportional
to 1/h or larger) associated to such effects cannot be represented with
smooth coefficients. More precisely, if we find a contradiction in the pro-
cess of determining the coefficient f (m), for example f (m) turns out to be
discontinuous or the condition to determine f (m) has no solution, then
we can conclude that f̂ can be described by f (0) + · · · + hm−1f (m−1) and
that the next order contribution will not be regular. While it is possible to
study irregular behavior in detail, for example with the help of a multi-
scale expansion instead of (10), we should keep in mind that the irregular
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effects have to be interpreted as numerical errors as far as the approxima-
tion of Eq. (1) is concerned because they are related to physical situations
which are not captured in the model (1). Therefore, we will restrict our-
selves to the expansion (10) in this article. In fact, we will use the more
specific form

f̂i (n,j)=f
(0)
i (tn,xj )+hf

(1)
i (tn,xj )+h2f

(2)
i (tn,xj )+· · ·

f
(0)
i =f ∗

i , ρ1 =0. (11)

This expansion restricts us to lattice Boltzmann solutions which are
perturbations of the equilibrium distribution f ∗

i =f
eq
i (1,0) with unit den-

sity ρ0 = 1 and zero velocity u0 = 0 (reflecting the low Mach number sit-
uation). Together with the second assumption ρ1 = 0 it implies that the
density has the form ρ̂ = 1 +h2ρ2 +· · · . Both assumptions are compatible
with the presented algorithm and can actually be derived (at the expense
of some technical arguments, see for example refs. 13, 16).

3.1. Asymptotic Analysis of the Update Rule

Let us start with the update rule of the algorithm. Inserting (11) into
the left hand side of the transport step (7), we find expressions of the form

f
(k)
i (tn+1(h),xj+ci (h))=f

(k)
i (tn(h)+h2,xj (h)+hci ).

Since the functions f
(k)
i are assumed to be smooth, we can perform a

Taylor expansion around the point (tn,xj ). After dropping the argument
h of tn and xj for brevity, we formally obtain an infinite series

f
(k)
i (tn +h2,xj +hci )=f

(k)
i (tn,xj )+

∞∑

r=1

hrDr(∂t , ci ·∇)f
(k)
i (tn,xj )

(12)

where Dr(θ, σ ) are polynomials like

D1(θ, σ )=σ, D2(θ, σ )= θ +σ 2/2, D3(θ, σ )=σ(θ +σ 2/6), . . .

The general expression is

Dr(θ, σ )=
∑

2a+b=r

θaσ b

a!b!
, r �0, (13)
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where θ replaces the time derivative and σ the directional space derivative
ci ·∇. Altogether, the expansion of the left hand side of (7) is

f̂i (n+1,j + ci ) =
∑

m�0

hm

(
f

(m)
i (tn,xj )

+
m−1∑

k=0

Dm−k(∂t , ci ·∇)f
(k)
i (tn,xj )

)
, (14)

Next, we have to expand the right hand side of (7) with the substitution of
f̂i by the expansion (11). Due to the nonlinear term in the collision oper-
ator, a mixing of orders occurs. If we denote the moments of f (m) by ρm

and um respectively, we first find from (11) by summation

ρ̂(n,j) = 1+h2ρ2(tn,xj )+· · ·
û(n,j) = hu1(tn,xj )+h2u2(tn,xj )+· · ·

Inserting these expansions into f
eq
i , we obtain

f
eq
i

(
ρ̂(n,j), û(n,j)

) = f
eq,(0)

i (tn,xj )

+hf
eq,(1)

i (tn,xj )+h2f
eq,(2)

i (tn,xj )+· · ·

with f
eq,(0)

i =f ∗
i and

f
eq,(m)

i =f ∗
i

{
ρm +3um · ci + 9

2

∑

k+l=m

[
(uk · ci )(ul · ci )− 1

3
uk ·ul

]
}

.

Thus, the right hand side of (7) turns out to be

∑

m�0

hm

[
f

(m)
i + 1

τ
(f

eq,(m)

i −f
(m)
i )+giδm3

]
(tn,xj ), (15)

where δij is the Kronecker delta and

gi(t,x)=3f ∗
i ci ·G(t,x).
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Equating (14) and (15) we obtain in order m

f
(m)
i +

m−1∑

k=0

Dm−k(∂t , ci ·∇)f
(k)
i =f

(m)
i + 1

τ
(f

eq,(m)

i −f
(m)
i )+giδm3. (16)

If we solve (16) for f
(m)
i , we find that f

(m)
i can be expressed as a sum

of f
eq,(m)

i and derivatives of lower order coefficients f
(k)
i . In particular, we

can use (16) to successively replace the lower order coefficients by equilib-
rium coefficients. Eventually, we find

f
(m)
i =f

eq,(m)

i +
m−1∑

k=0

Em−k(τ, ∂t , ci ·∇)f
eq,(k)

i +Fm(τ, ∂t , ci ·∇)gi (17)

with recursively defined polynomials Ek and Fk (details are given in
Appendix A). Inspecting (17) more closely, we notice that it actually
defines f

(m)
i once we know the moments ρ0, . . . , ρm and u0, . . . ,um which

make up the equilibrium functions f
eq,(k)

i . Equations for these moments
are obtained by taking corresponding averages of (17). Since

∑

i

f
(m)
i =ρm =

∑

i

f
eq,(m)

i ,
∑

i

f
(m)
i ci =um =

∑

i

f
eq,(m)

i ci

we see that (17) gives rise to partial differential equations for ρ0, . . . , ρm−1
and u0, . . . ,um−1 because the moments of order m drop out. General
expressions for the differential operators in these equations are again given
in the Appendix. Here we just list the results related to the relevant orders.

In order (m=1), we find the trivial condition 0=0 which reflects the
fact that our assumption f

(0)
i = f ∗

i in (11) does not lead to a contradic-
tion. In order (m=2), we obtain

∇ρ1 =0, ∇·u1 =0 (18)

which is an incompressibility condition on u1 and ∇ρ1 =0 is in accordance
with our assumption ρ1(t,x)=0. The equations for the next order are

∂tu1 +u1 ·∇u1 + 1
3
∇ρ2 =ν�u1 +G, ∇·u2 =0. (19)
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i.e. u1 is a solution of the incompressible Navier–Stokes equation with
ρ2/3 as associated pressure. Proceeding to the case m = 4, the following
equations occur

∂tu2 +u1 ·∇u2 + u2 ·∇u1 + 1
3
∇ρ3 =ν
u2,

∇·u3 = −∂tρ2 − 1
2
∇·G (20)

where the divergence condition for u3 has been simplified using the fact
that u1 satisfies the Navier–Stokes equation. Together with the second
condition of (19), this is a homogeneous generalized Oseen problem for
u2 and ρ3. In particular, if initial and boundary conditions for u2 vanish,
the coefficients u2 and ρ3 are zero. Moreover, we see from the diver-
gence condition that u3 is non-zero whenever the Navier–Stokes pres-
sure is time dependent (reflecting the compressible nature of the lattice
Boltzmann algorithm). Keeping in mind that the average velocity has the
expansion û=hu1 +h2u2 +h3u3 +· · · , we conclude that û/h yields a sec-
ond order accurate approximation of the Navier–Stokes velocity if u2 = 0
because h2u3 then acts as error term added to u1. Similarly, we can access
the Navier–Stokes pressure using (ρ̂ − 1)/(3h2) to second order accuracy
if ρ3 = 0 which also happens if u2 has zero initial and boundary values.
We want to stress that these conclusions only apply if the regular expan-
sion (11) correctly describes the lattice Boltzmann solution up to order h3.
In Section 3.3, we show that this assumption is violated when the bounce
back rule is used. In this case, additional irregular coefficients need to be
added to the expansion which may reduce the accuracy of pressure and
velocity predicted in the regular case.

Information about the behavior of the coefficients at t = 0 and ∂�

will be extracted from the initial and boundary part of the LB algorithm.
However, before we proceed to this analysis, we summarize our observa-
tions and specify the structure of the leading order coefficients using (17)
and the detailed form of the operators Ek (see Appendix A),

f
(0)
i = f ∗

i ,

f
(1)
i = f

eq,(1)

i =3ci ·u1f
∗
i ,

f
(2)
i = f

eq,(2)

i − τci ·∇f
(1)
i

= ρ2f
∗
i +3ci ·u2f

∗
i + 3

2
(3(ci ·u1)

2 −|u1|2)f ∗
i − τci ·∇f

(1)
i . (21)
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3.2. Asymptotic Analysis of the Initial Condition

In order to find information about the initial values of the expansion
coefficients (21), we insert the expansion (11) into (9). Noting that

f
eq
i (1+3h2p,hψ)=f ∗

i (1+3hci ·ψ)+h2
(

3p +3ci ·u2 + 3
2
(3(ci ·ψ)2 −|ψ |2)

)

a comparison of equal orders yields

u1(0,x)=ψ(x), u2(0,x)=0, ρ2(0,x)=3p(0,x)

so that u1, ρ2/3 satisfies (1).

3.3. Asymptotic Analysis of the Bounce Back Rule

It remains to derive the boundary values of the relevant moments
which we obtain by inserting expansion (11) into (8) and later using the
specific form (21) of the coefficients.

Expanding around the point (tn,xj i ) the computations are very sim-
ilar to the analysis of the update rule and we can use the same operators
Dk. Taking into account that xj i =xj +hqj ici , the directional derivative is
now qj ici · ∇ instead of ci · ∇. In accordance with (14) we have (defining
D0(θ, σ )=1)

f̂i (n+1,j)=
∑

m�0

hm
m∑

k=0

Dm−k(∂t , qj ici ·∇)f
(k)
i (tn,xj i ).

The right hand side f̂ b
i∗(n,j) of (8) has a structure similar to the col-

lision product. Expanding also around xj i =xj +hqj ici , we arrive at

f̂ b
i∗(n,j) = hβi(tn,xj i )

+
∑

m�0

hm
m∑

k=0

Dm−k(0, qj ici ·∇)

×
[
f

(k)
i∗ + 1

τ
(f

eq,(k)
i∗ −f

(k)
i∗ )+giδm3

]
(tn,xj i ).

where we have set

βi(t,x)=6f ∗
i ci ·φ(t,x), x ∈ ∂�.

Finally, collecting terms of equal order hm in the bounce back rule, we get
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βi(tn,xj i )δm1 +
m∑

k=0

(
−Dm−k(∂t , qj ici ·∇)f

(k)
i +Dm−k(0, qj ici ·∇)

×
[
f

(k)
i∗ + 1

τ
(f

eq,(k)

i∗ −f
(k)
i∗ )+giδm3

])
(tn,xj i )=0. (22)

With (21), the h0-contribution again leads to the trivial condition 0 = 0
because f

(0)
i =f ∗

i =f
eq,(0)

i and f ∗
i∗ =f ∗

i . In the first order we have f
(1)
i =

f
eq,(1)

i , f
(1)
i∗ =−f

(1)
i so that (22) amounts to

6f ∗
i ci · (φ(tn,xj i )−u1(tn,xj i ))=0.

From this condition, we can conclude u1(t,x)=φ(t,x) because at points
close to a regular boundary point x ∈∂�, the incoming directions include
d linearly independent vectors. Only at irregular boundary points with
sharp corners we may find less than d independent directions. Altogether,
u1, ρ2/3 turn out to be the solution of the full boundary value problem
(1), (2).

Proceeding to order h2, we find

6f ∗
i ci ·u2(tn,xj i )=f ∗

i (6qj i −3)(ci ·∇)ci ·u1(tn,xj i ). (23)

Here it is important to notice that for general geometries the val-
ues qj i cannot be written as smooth functions of the points xj i because
the difference between the values qj i corresponding to neighboring nodes
xj i is generally of order one while the distance between the nodes is of
order h. Consequently, (23) cannot be satisfied by any smooth function u2.
According to our observation at the beginning of Section 3, this tells us
that the lattice Boltzmann solution f̂i generally exhibits irregular behavior
at the order h2 because f

(2)
i cannot be determined as a smooth function.

We thus face an expansion of the form

f̂i (n,j)=f
(0)
i (tn,xj )+hf

(1)
i (tn,xj )+h2δ̂i (n,j) (24)

with a grid function δ̂i (n,j) in second order. For the averages of f̂i this
implies

ρ̂(n,j) = 1+h2
∑

i

δi(n,j)

û(n,j) = hu1(tn,xj )+h2
∑

i

δi(n,j)ci (25)
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Since δi(n,j) generally has non-zero averages (examples are given in
Section 3.4), we conclude that the Navier–Stokes velocity u1 can only be
extracted from û with first order accuracy and that the pressure is no
longer recoverable from ρ̂ (inconsistent pressure).

While this describes the general behavior of the bounce back algo-
rithm, the situation may be better in the case of specific geometries where
qj i is constant (and thus smooth) along connected components of the
boundary ∂�. For example, in the particular case qj i = 1/2 where the
boundary is located half a link distance away from the boundary nodes,
condition (23) leads to u2(t,x) = 0 at the boundary. As explained above,
this implies that the moments u2, ρ3 of the regular part of the expansion
vanish. However, by carrying out the expansion to order three, we find
that the third order coefficient cannot be described by a smooth func-
tion which indicates irregular behavior (the situation is similar to the one
explained for general constant qj i below). Since the irregular third order
contribution generally has a non-zero average, the pressure will be only
first order accurate. More specifically, the expansion of f̂i has the form

f̂i (n,j)=f
(0)
i (tn,xj )+hf

(1)
i (tn,xj )+h2f

(2)
i (tn,xj )+h3η̂i (n,j).

where now irregular behavior is found one order later (this can be checked
analytically by carrying out the expansion to order three). Computing the
averages, we thus have

(ρ̂(n,j)−1)/h2 = ρ2(tn,xj )+h
∑

i

ηi(n,j)

û(n,j)/h = u1(tn,xj )+h2
∑

i

ηi(n,j)ci

i.e. pressure can be recovered with first order and velocity with second
order accuracy in the case qj i =1/2.

However, for other constant values of qj i , the situation turns out to
be quite different. Despite the fact that the right hand side of (23) is now
a smooth function, (23) can typically not be satisfied by any smooth u2.
This is due to the fact that ci ·u2 is linear in ci while (ci ·∇)ci ·u1 is qua-
dratic which, in general, leads to conflicts if equality is required for a lin-
early dependent set of vectors ci . To give a specific example, we consider a
stationary linear flow in a half space �= (−∞,0)×R

u(x)=Ax, p(x)=−1
2
xTA2x, A=

(
4 1
1 −4

)
. (26)
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Using the D2Q9 model, the incoming directions at the boundary ∂�

are (−1,0)T, (−1,1)T, and (−1,−1)T. If we assume, for example, qj i = 0
then the following three conditions on u2 = (ux

2, u
y

2)T follow from (23)

ux
2 =−2, ux

2 +u
y

2 =−1, ux
2 −u

y

2 =1. (27)

However, by adding the second and the third condition, we find ux
2 =

0 which obviously contradicts the first condition. Consequently, we cannot
construct a regular coefficient f

(2)
i and the expansion has the form (24)

which implies inconsistent pressure and first order accurate velocity.
We conclude with the remark that within the special case of geome-

tries having constant qj i there are some rare cases in which the linear and
quadratic ci-dependence in (23) does not lead to incompatibilities. One
such very special situation is the famous Poiseuille flow in an axis paral-
lel channel which therefore is a rather inadequate test case for the general
behavior of boundary algorithms.

In the following section, numerical examples are used to illustrate the
theoretically predicted behavior of the lattice Boltzmann algorithm with
bounce back rule, i.e. first order accurate velocity and an inconsistent pres-
sure fields for general flows.

3.4. Numerical Tests

We apply the lattice Boltzmann method with bounce back rule to sev-
eral boundary value problems for which exact solutions are known. The
first problem is the stationary linear problem (26) described in the last sec-
tion which we now restrict to the unit square. The second problem is also
a stationary linear problem on the unit square

u(x)=Bx, p(x)=−1
2
xTB2x, B =

(
0 1
1 0

)
. (28)

The third problem is the decaying Taylor vortex flow described in ref.
18 and restricted to the unit square with parameters A= π

2 and B = π
2 . The

last two problems are taken from ref. 19. One is the Poiseuille flow driven
by the body force in an inclined channel, another is the circular flow in a
disk with radius R = 1. Their exact solutions are given in ref. 19, but the
slope of the channel used here is 3/10. The pressure of the circular flow is
given by integrated Bessel functions. We calculate it using a second order
accurate numerical integration.

For the circular flow, we initialize the velocity to the exact value at
time t = 0.5. For all other test problems, the initial velocity is the exact
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value at time t = 0. The termination time is T = 1. Boundary conditions
are specified by evaluating the exact velocity on the boundary ∂�.

The numerical tests are carried out on a sequence of grids with grid
size h∈{ 1

10 , 1
20 , 1

30 , 1
40 , 1

50 }. The viscosity parameter is fixed as ν =0.1. The
error between exact and numerical values is measured in terms of

M∞ = max
0�tn�T

max
xj∈�

‖M̂(n,j)−M(tn,xj )‖∞,

where, M̂ and M represent the numerical and exact values, respectively (M
is either pressure or velocity with corresponding M̂ given by (ρ̂ −1)/(3h2)

and û/h).
For the flows in the unit square the boundary nodes are located

exactly on the boundary, i.e. qj i =0 for all boundary nodes. Of course, one
would normally take qj i = 1/2 in this geometry because the bounce back
rule performs better in that case as we have seen in the previous section.
However, we are interested in the behavior of the bounce back rule for
general geometries where it is impossible to enforce qj i =1/2 at all nodes.
In this sense, qj i =0 in connection with the unit square serves as a simple
model for more complicated geometries. Clearly, for the other geometries
(the circular flow and inclined Poiseuille flow) the boundary nodes inevi-
tably exhibit many different qj i ∈ [0,1) no matter how the grids are laid
out.

Figure 2 shows the logarithmic error of velocity against the loga-
rithmic grid size, which decreases while the grid becomes finer. The least

Fig. 2. Logarithmic error of velocity versus log10 h for different test problems using bounce
back rule: (∗) linear flow (26), (◦) linear flow (28), (+) Taylor vortex, (�) circular flow and
(�) Poiseuille flow. The error is of order h (color online).
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Fig. 3. Left: logarithmic pressure error vs. log10 h for various test problems show that the
bounce back rule leads to an inconsistent pressure. Right: pressure contour lines compared
with exact solution (black) for the flow (28) (color online).

squares slopes have values around 1, which demonstrates that the bounce
back rule can bring out first order accurate velocities in general.

A similar plot for pressure is given in Fig. 3 but here the error
increases with decreasing grid size, and the slopes are around zero or even
negative, which means the pressure is zero order accurate. The tremendous
difference between exact pressure and lattice Boltzmann approximation for
the test case (28) is presented in the right plot of Fig. 3. In fact, what we
see is essentially the error term

∑
i δ̂i (n,j) in (25) which is irregular in the

corners.

3.5. Modifications of the Basic Algorithm

Since the accuracy of the lattice Boltzmann scheme with bounce back
rule is, in general, restricted to first order for velocity and zeroth order for
pressure, there is a need to improve the scheme. This is achieved by enforc-
ing u2 = 0 on the boundary. In view of (23) we modify the bounce back
rule (8) according to

f̂i (n+1,j)= f̂ b
i (n,j)−h2f ∗

i (6qj i −3)(ci ·∇)(ci ·u1(tn,xj i )) (29)

so that the correction term removes the unwanted right hand side of (23).
Note, however, that the rule cannot be implemented in that form because
(ci ·∇)ci ·u1 involves normal derivatives of the Navier–Stokes solution u1
and these derivatives cannot explicitly be written in terms of the bound-
ary data φ. We first have to replace the space derivatives by a suitable
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discretization. This discretization is by far not unique so that additional
constraints are important in the design like stability and simplicity. Below
we present several algorithms which realize approximations of the required
derivative terms. The asymptotic analysis of these schemes always follows
the same pattern. We have to insert the expansion (11) into the condition,
use the structure (21) and check whether u2 = 0 at the boundary. If we
write the conditions as additive corrections to the bounce back scheme,
we can use the results of Section 3.3 and just analyze the additive correc-
tion. For one of the methods, we give an example of this analysis in the
appendix.

3.5.1. Finite Difference Approach (FD)

A straightforward idea is to approximate the derivatives in (ci ·∇)ci ·
u1 by means of finite differences (this has also been used in ref. 18). One
choice is

ci ·∇ci ·u1(tn,xj i ) ≈ ϕ̂i (n,j)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
û(n,j + ci )−φ(tn,xj i )

] · ci
(1+qj i )h

qj i � 1
2

[
û(n,xj )−φ(tn,xj i )

] · ci
qj ih

qj i >
1
2

where the reason to use two different expressions depending on qj i �
1/2 or qj i > 1/2 is for the sake of stability. The corresponding boundary
algorithm is

f̂i (n+1,j)= f̂ b
i (n,j)−h2f ∗

i (6qj i −3)ϕ̂i(n,j)

Note that, in general geometries, extra considerations are required if
for some boundary node a neighbor is missing in the incoming direction,
or in other words, if there exist two opposing incoming directions at the
same node. This happens, for example, at corners in 2D and 3D, at edges
in 3D, but also along smooth boundaries at nodes where incoming links
are almost tangential to the boundary. In such situations the algorithm
above is not applicable if qj i � 1/2 so that the corresponding directional
derivatives of u1 are missing. However, the derivatives can be computed
from the boundary values in these cases by using appropriate finite differ-
ences along the boundary. In our test case on the square geometry, for
example, we can get the first derivatives of u1 in the corners by taking
one-sided derivatives of the boundary values along the edges of the square.
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To analyze the proposed FD scheme, we write û in the formula for
ϕ̂i as

∑
i f̂ici and insert the expansion. In leading order, we recover the

required derivative term and in connection with (23) which takes care of
the analysis of the bounce back part f̂ b

i , we conclude that u2 = 0 at the
boundary. Since u2 = 0 is also compatible with the corner treatment, we
conclude that FD leads to first order accurate pressure and second order
accurate velocity fields.

We remark that all non-local link-based boundary schemes face the
same problem as FD at boundary nodes with opposing incoming direc-
tions although the problem is rarely addressed in literature. In the exam-
ples BFL, MLS below, we use the FD approach for the corners described
here (note that simply applying the bounce back rule for the two oppos-
ing incoming directions in the corners inevitably reduces the accuracy of
the whole method).

3.5.2. Bouzidi’s Rule (BFL)

This boundary algorithm has been numerically demonstrated to give
second order accurate velocity in ref. 19. Therefore, it is not surprising that
BFL can be viewed as a corrected bounce back rule with a particular dis-
cretization of the required derivative (ci · ∇)ci · u1. To see this, we write
BFL in the form

f̂i (n+1,j)= f̂ b
i∗(n,j)+�±

i (n,j)

with

�−
i (n,j) = (1−2qj i )

[
f̂ c

i∗(n,j + ci )− f̂ c
i∗(n,j)

]
, qj i �1/2,

�+
i (n,j) = (1−2qj i )

[
f̂i (n+1,j)− f̂ c

i (n,j)
]
, qj i >1/2.

With asymptotic analysis we find that the leading order of �±
i (n,j)

is precisely the required term 3f ∗
i ci · ∇ci ·u1. We can thus conclude that

the BFL rule gives rise to a second order accurate velocity and a first
order accurate pressure (if the nodes with opposing incoming directions
are properly treated – see comments for FD).

3.5.3. The Boundary-Fitting Method (FH) and its Improvement
(MLS)

The so-called boundary-fitting method (FH) proposed in ref. 22, is
based on a linear combination of f̂ c

i∗ and f
eq
i∗ at the boundary node with-

out reference to neighboring nodes. As outlined above, we write it as a
correction of the bounce back rule which gives rise to
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f̂i (n+1,j)= f̂ b
i∗(n,j)+ θ̂i (n,j)

with

θ̂i (n,j)=−χj i (f̂
c
i∗(n,j)− f̂

eq
i∗ (n,j)+3f ∗

i v̄i (n,j) · ci ),

where v̄i (n,j)= (hφ(tn,xj i )− û(n,j))/qj i for qj i �1/2 and zero for qj i <

1/2. This method has an intrinsic disadvantage because the parameter χj i

χj i =
{

(2qj i −1)/τ, qj i � 1
2

(2qj i −1)/(τ −1), qj i <
1
2

depends on 1/(τ −1) which eventually leads to instability when τ ≈1.
In ref. 15 an improvement (MLS) of FH is achieved by using the

next neighbor along the link to calculate v̄i (n,j) = û(n,j + ci ) − û(n,j)

for qj i <1/2. Then χj i becomes a function of 1/(τ −2) which enlarges the
region of stability but does not overcome the inherent drawback of FH.
Moreover, this modification is not defined for opposing incoming direc-
tions.

To motivate the boundary conditions FH and MLS, a Chapman–
Enskog analysis is used in ref. 15. However, apart from the structural
assumptions related to the Chapman–Enskog approach, it requires the
additional assumption that the intrinsic time scale of the unsteady flow
must be large compared with the advection time on the lattice scale. In
our analysis, this assumption is built in from the beginning and we can
show the accuracy order without any extra assumption (see Appendix B).
An interesting behavior of the method FH is observed in the case when
opposing incoming directions are present in the case qj i = 0. Then, the
accuracy reduces from second to first order for velocity and from first
order to inconsistency for pressure. This behavior can be explained with
the analysis presented in Appendix B. A simple fix of FH at such nodes
is given by applying the method POP0 (see below) to the opposing incom-
ing directions. With this choice the method FH is still a local method. In
our numerical tests, we used this slight modification of FH.

3.5.4. Link-Averaged One Point Approach (POPθ)

This discretization uses the fact that the coefficient f
(2)
i in (21) carries

information about the required derivative. In fact

ci ·∇f
(1)
i =3f ∗

i ci ·∇ci ·u1
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and from our expansion, we can see that ci · ∇f
(1)
i can approximately be

recovered from the numerical values

− 1
h2

(f̂i − f̂ c
i + ĝi )= ci ·∇f

(1)
i +O(h). (30)

Instead of using this relation directly, we combine it with an averag-
ing step over all links, which leads to

h2f ∗
i (3−6qj i )(ci ·∇)ci ·u1 =−

∑

k

Kik(f̂k − f̂ c
k + ĝk)+O(h3), (31)

where the coefficients Kik are defined as

Kik =−3
2
(3−6qj i )f

∗
i

(
(ci · ck)2

−|ci |2/3− c2
iα(|ck|2 −1)

)
.

Here α ∈{1, . . . , d} is any index (we take α =d). For reasons of stability, it
is favorable to evaluate the right hand side of (31) in a semi-implicit form.
Eventually, we arrive at the following one-point algorithm at the boundary
node xj for which the incoming directions are i ∈Vj :

• compute Kik for all pairs of velocity indices

• select θ ∈ [0,1]

• compute Lik =δik +θKik for indices i, k∈Vj of the incoming direc-
tions

• determine the inverse of Lik

• evaluate σk(n,j)= f̂ c
k (n,j)− ĝk(n,j)− (1−θ)f̂k(n,j) for all direc-

tions k

• noting that f̂k(n+1,j) is available for non-incoming directions k �∈
Vj after the transport step, compute for all i ∈Vj

ri(n,j)=f b
i∗(n,j)−

∑

k �∈Vj

θKikf̂k(n+1,j)−
∑

k

Kikσ̂k(n,j)
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• determine the required incoming populations f̂k(n+ 1,j) by solv-
ing the linear system (here the inverse of the small matrix Lik is needed)

∑

k∈Vj

Likf̂k(n+1,j)= ri(n,j), i ∈Vj

Similar to the original bounce back rule, this algorithm is completely local
(no neighbor node needs to be accessed for the evaluation). However, it
is not link-based, i.e. the incoming population in direction ci is computed
not only by using information concerning directions ci and ci∗ , because
averaging over all velocities is involved in (31). In fact, this averaging has
a stabilizing effect.

Before running the scheme, the inverse of Lik has to be assembled (if
θ >0) for each boundary node (note that the first four steps of the algorithm
can be done in a pre-processing step if the boundary is non-moving). Invert-
ibility of the matrix Lik can always be guaranteed with a suitable choice of
θ ∈ [0,1]. In fact, the parameter θ controls the location of the eigenvalues of
θKik and up to a finite number of choices the spectrum will not contain −1.
Consequently, Lik = δik + θKik is invertible for all but finitely many choices
of θ .

3.5.5. Multi-Reflection Method (MR)

In contrast to the algorithms above, the multi-reflection method MR
presented in ref. 14 is not a modification of the bounce back rule, i.e. it
does not reduce to bounce back if qj i = 1/2 for all nodes. In general, it
uses three nodes (i.e. two neighbors) along the incoming directions

f̂i (n+1,j)= κ1f̂
c
i∗(n,j)+κ0f̂

c
i∗(n,j + ci )+κ−1f̂

c
i∗(n,j +2ci )+ κ̄−1f̂

c
i (n,j)

+κ̄−2f̂
c
i (n,j + ci )+3wif

∗
i hφ(tn,xj i ) · ci +3f ∗

i F
p.c.
i (n,j).

In ref. 14, two sets (MR1 and MR2) of parameters κ1, κ0, κ−1, κ̄−1,
κ̄−2, wi and F

p.c.
i are given.

At boundary nodes where only one neighbor is available (i.e. the
neighbor j + 2ci is missing), a modification is suggested in ref. 14 to
replace f c

i∗(n,j + 2ci ) by f c
i∗(n,j + ci ). However, in the case of opposing

incoming directions when both neighbors are not available, an algorithm
is only given for the case qj i = 1/2 when bounce back can be used. In
the case of more general qj i we have extended the proposed treatment for
one missing neighbor to the case of two missing neighbors, i.e. we replace
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f c
i∗(n,j+ci ) with f c

i∗(n,j). Another possibility is to use the FD approach
which works well in connection with FD, FH, MLS, and BFL.

According to our asymptotic analysis, when each boundary node has
two neighbors along the link, the method MR yields u2 =0 at the bound-
ary so that second order velocity and first order accurate pressure fields
are certainly obtained (if the case of missing neighbors is properly treated).
Expanding to higher orders, we even find that MR implies smooth bound-
ary values for u3. In principle, this guarantees a smooth coefficient f (3) so
that irregular behavior would only appear at fourth order. This explains
the terminology third order kinetic accuracy used in ref. 14 from the point
of view of the asymptotic expansion approach. However, smoothness of
f (3) also requires proper initialization up to third order terms which is
difficult for general initial value problems. In fact, the initial value for u3
depends on the initial time derivative of the pressure (see (20)) which is
generally not known and has to be determined by solving additional Pois-
son equations. Secondly, the treatment of the boundary nodes having less
than two neighbors may also destroy the smoothness of f (3) so that the
pressure is only first order accurate.

If these problems do not appear, like in the case of Poiseuille flow
where always two neighbors are available and where the initialization of
u3 is easy, the method MR yields indeed second order accuracy for both
velocity and pressure (or even the exact pressure which is constant in the
case of Poiseuille flow). We could reproduce this result with our code. Also
for the stationary linear problem (26) on the unit square, MR1 yields the
exact solution if the populations are initialized correctly up to fourth order
and if the incoming populations at the corners and the adjacent nodes are
prescribed exactly up to order four. If the initial and corner populations
are only exact up to third order, we recover both second order pressure
and velocity. However, if we do not use the exact populations as boundary
values (they are only available in simple cases) but any of the other corner
treatments described above, we find unstable solutions (this may be partly
due to the fact that we work with the BGK collision operator and not the
multiple relaxation time approach). Only the combination with the bounce
back rule in the case qj i =1/2 worked satisfactorily.

3.6. Numerical Tests

In the following, we use the decaying Taylor vortex solution with
the same parameters as in Section 3.4 to test and compare the bound-
ary schemes. Since the method MR does not yield stable solutions with
the available corner treatments for general values qj i , we split the com-
parison. First we consider those schemes which are modifications of the
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bounce back rule for q = 0 and q = 0.1 (where q is the common value of
qj i at lower and left boundary of the square). In the case q =1/2, all these
schemes reduce to the bounce back rule and a comparison with MR is
now possible because, for qj i = 1/2, MR works in combination with the
bounce back rule at the corners and gives rise to a first order accurate
pressure and a second order accurate velocity.

The numerical convergence rates for pressure and velocity are summa-
rized in Table I and the corresponding error plots can be found in Fig. 4.

Tables II and III give an impression on the stability of the different
boundary schemes. Here, we compare the maximal error in velocity for a
computation on a grid with h = 1/50 and viscosities ranging from 1/100
to 10. The letter N is used if no error value could be obtained because of
instability.

In the general case q > 0 (Table IV is a representative case), we can
see that FH, POP1 and BFL have the best stability among the modifica-
tions of the bounce back rule where FH is very inaccurate or suffers from
instability if τ ≈ 1. Only when q = 0, BFL is slightly more stable than
POP1 which in turn has a slightly smaller error. However, on rectangular
domains, the best choice of q with respect to stability is certainly q =1/2

Table I. Convergence Rates for the Taylor Vortex Flow from Section 3.4 Computed

with Different Boundary Algorithms

FD POP0 POP1 POP0.7 BFL FH

Pressure 1.011 1.138 0.999 1.172 1.088 1.288
Velocity 1.979 2.008 1.992 2.023 1.975 1.923

Fig. 4. Double logarithmic error plots of pressure (left) and velocity (right) versus grid size.
The boundary schemes are FD (∗), POP0 (◦), POP1(+), POP0.7(
), BFL(�), and FH(�)
(color online).
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Table II. Maximal Velocity Error on a Fixed Grid (h = 1/50) with Nodes on the

Boundary (q =0) for Varying Viscosity

Viscosity 1/100 1/50 1/10 1/6 1 10

FD N N 0.00019 0.00028 0.00195 N

FH 0.00014 0.00015 0.00023 N 0.00335 0.15157
POP0 N 0.00006 0.00016 0.00027 0.00278 0.07660
POP0.7 N 0.00007 0.00015 0.00027 0.00278 0.07651
POP1 N 0.00008 0.00011 0.00027 0.00278 0.07675
BFL 0.00014 0.00015 0.00023 0.00038 0.00272 0.07516

The letter N indicates instability.

Table III. Maximal Velocity Error on a Fixed Grid (h = 1/50) with Nodes not on

the Boundary (q =0.1) for Varying Viscosity

Viscosity 1/100 1/50 1/10 1/6 1 10

FD N 0.00014 0.00019 0.00031 0.00379 N

FH 0.00014 0.00015 0.00023 N 0.00335 0.15157
POP0 N N N 0.00025 0.00235 0.07480
POP0.7 N N 0.00015 0.00025 0.00235 0.07510
POP1 0.00003 0.00003 0.00015 0.00025 0.00235 0.07516
BFL 0.00011 0.00010 0.00021 0.00036 0.00232 0.07425

The letter N indicates instability.

Table IV. Maximal Velocity Error on a Fixed Grid (h = 1/50) with Nodes Half

Way from the Boundary (q =1/2) for Varying Viscosity

Viscosity 0.01 0.02 0.03 0.1 1 10

BB 0.00009 0.00007 0.00006 0.00010 0.00252 0.07457
MR 0.00002 0.00003 0.00004 0.00014 N N

The letter N indicates instability.

in which case all the considered methods turn into the simple bounce back
rule. A comparison with MR for this case is given in Table IV. We have
also compared the new method POPθ with BFL for the circular flow prob-
lem. In this case, the geometry coefficients qj i range in the whole inter-
val [0,1). On two grids (h= 1/50,1/100) with termination time T = 1 we
have varied the viscosity. Down to ν = 0.0001 both schemes are stable in
the sense that they produce bounded solutions.
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Fig. 5. Double logarithmic error plots of pressure (left) and velocity (right) versus grid size
using POP0: (∗) linear flow (26), (◦) linear flow (28), (+) Taylor vortex, (�) circular flow and
(�) Poiseuille flow (color online).

Finally, we have applied the proposed method POP1 to the set of
problems introduced in Section 3.4. While the bounce back algorithm has
only low accuracy for these test cases (see Fig. 3), our algorithm shows the
predicted second order accurate velocity and first order accurate pressure
(see Fig. 5).

4. CONCLUSION

In this article, we have shown that the asymptotic analysis which has
been successfully used in the consistency analysis of numerical methods for
differential equations(1) can also be applied to lattice Boltzmann schemes.
The analysis gives rise to analytic details about the behavior of the numer-
ical solution which allows to access the accuracy of the lattice Boltzmann
moments as approximations to the Navier–Stokes fields.

As we have demonstrated, the analysis of conditions apart from the
evolution equations (like initial conditions, boundary conditions, but also
coupling conditions, etc.) is straightforward. It is clear that the analy-
sis presented here is more general than the one in ref. 20 where differ-
ent boundary algorithms are investigated for a particular class of flows
(Poiseuille flows). We only require smooth solutions of the underlying
Navier–Stokes problem but even if the solution exhibits singularities one
can analyze the method in a similar way using appropriate tools from
asymptotic analysis.

In refs. 14, 21, the analysis is based on the Chapman–Enskog (CE)
expansion which establishes (at some order) a connection between the



30 Junk and Yang

lattice Boltzmann method and the weakly compressible isothermal Navier–
Stokes equation. This naturally leads to different expansion coefficients for
the LB variables (for example, the coefficients depend on the grid size and
they are not specified in terms of the incompressible Navier–Stokes solu-
tion as in our expansion) but apart from that the formal steps in the anal-
ysis of the boundary conditions and in the construction of new algorithms
are very similar: the truncated expansion is inserted into the boundary
scheme, Taylor expansions around boundary points are performed and
the leading order term is analyzed to derive schemes of higher accuracy.
However, the work(14,21) is restricted to stationary flows.

We have also constructed a new local boundary condition (POPθ )
based on the results of our analysis. The numerical tests indicate that it
may be an interesting alternative to existing methods.

The same methodology that has been used to analyze and construct
boundary conditions which are consistent to Dirichlet conditions on the
Navier–Stokes level can also be used to investigate and formulate other
conditions like Neumann conditions or normal stress conditions. This will
be the subject of future work.

APPENDIX A: DETAILS CONCERNING THE EXPANSION

A.1. Recursively Defined Operators

The polynomials Ek in (17) are defined recursively by E0(τ, θ, σ )= 1
and

Ek(τ, θ, σ )=
k−1∑

r=0

(−τ)Dk−r (θ, σ )Er(τ, θ, σ ), k �1,

where Dk−r are given by (13). The polynomials Fm are simply

Fm(τ, θ, σ )= τEm−3(τ, θ, σ )

if we define Ek = 0 for k < 0. Using these definitions, the equality of (16)
and (17) can easily be proved by induction. Explicitly, we have

E0(τ, θ, σ ) = 1,

E1(τ, θ, σ ) = −τσ,
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E2(τ, θ, σ ) = τ(τ − 1
2
)σ 2 − τθ,

E3(τ, θ, σ ) = −τ(τ 2 − τ + 1
6
)σ 3 + τ(2τ −1)θσ,

E4(τ, θ, σ ) = τ(τ 3 − 3
2
τ 2 + 7

12
τ − 1

24
)σ 4

−τ(3τ 2 −3τ + 1
2
)θσ 2 + τ(τ − 1

2
)θ2.

A.2. Operators in the Moment Equations

The equations for the moments ρk, uk are obtained by taking corre-
sponding Moments of (17). In order to obtain a compact notation, we
first rewrite f

eq,(k)

i using the symmetric tensor product and the matrix
scalar product

(α⊗β)ij = 1
2
(αiβj +αjβi), A: B =

∑

i,j

AijBij

leading to

f
eq,(k)

i =f ∗
i

(
ρk +3ci ·uk +

∑

r+s=k

(
9
2
(ci ⊗ ci − 1

3
I ) :ur ⊗us)

)
.

Inserting this relation into (17) and summing over i after multipli-
cation with 1 resp. ci , we obtain differential equations for the moments
which are of the general form

m−1∑

k=0

(
am−kρk +bm−k ·uk +qm−k :

∑

r+s=k

ur ⊗us

)
+ τbm−3 ·G=0,

m−1∑

k=0

(
Am−kρk +Bm−kuk +Qm−k

∑

r+s=k

ur ⊗us

)
+ τBm−3G=0.

In these expressions, the differential operators ak(τ, ∂t ,∇), bk(τ, ∂t ,∇),

etc. result from weighted averages of the operators Ek(τ, ∂t , ci ·∇). Specifi-
cally, we find the polynomials
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ak(τ, θ, ξ)=
∑

i

f ∗
i Ek(τ, θ, ci · ξ), Ak(τ, θ, ξ)=

∑

i

f ∗
i Ek(τ, θ, ci · ξ)ci ,

where θ , ξ have to be replaced by ∂t ,∇ to obtain the operators. Examples
are

a1 =0, a2 = 1
3
τ(τ − 1

2
)|ξ |2 − τθ, a3 =0

and

A1 =−1
3
τξ , A2 =0, A3 = τ

3
((−1

6
+ τ − τ 2)|ξ |2 + (2τ −1)θ)ξ , A4 =0.

Accordingly, the operators acting on the velocities are given by

bk(τ, θ, ξ)=
∑

i

3f ∗
i Ek(τ, θ, ci · ξ)ci , Bk(τ, θ, ξ)=

∑

i

3f ∗
i Ek(τ, θ, ci · ξ)ci ⊗ ci

and relevant examples are

b1 =−τξ , b2 =0, b3 = τ((−1
6

+ τ − τ 2)|ξ |2 + (2τ −1)θ)ξ , b4 =0

and

B0 = I, B1 =0, B2 = τν|ξ |2I + τ 22νξ ⊗ ξ − τθI, B3 =0.

To give an example, we show how B2 acts on a smooth vector field

B2(τ, ∂t ,∇)u= τν�u+ τ 22ν∇∇·u− τ∂tu

which are exactly the linear u derivatives in the Navier–Stokes equation
(note that ∇∇·u=0 for divergence free fields).

Finally, the averaged operator for the quadratic term is a second rank
tensor

qk(τ, θ, ξ)=
∑

i

9
2
f ∗

i Ek(τ, θ, ci · ξ)(ci ⊗ ci − 1
3
I )
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and the velocity-weighted average leads to a third order tensor

Q
αβγ

k (τ, θ, ξ)=
∑

i

9
2
f ∗

i Ek(τ, θ, ci · ξ)(ciβciγ − 1
3
δβγ )ciα

where the tensor product Qkur ⊗us abbreviates summation over the last
two indices. Relevant examples are

q1 =0, q2 = τ(τ − 1
2
)ξ ⊗ ξ , q3 =0

and

Q
αβγ

1 (τ, θ, ξ)=−1
2
τ(ξβδαγ + ξγ δαβ), Q2 =0.

5. APPENDIX B: ASYMPTOTIC ANALYSIS OF THE BOUNDARY

FITTING METHOD FH

A detailed description of the method is given in Section 3.5. To
analyze the algorithm, we insert the regular expansion with the coeffi-
cients (21) into the expression for θ̂i (n,j) and perform a Taylor expansion
around the node (tn,xj i ). This gives rise to

θ̂i (n,j) = −χj i

[(
1− 1

τ

)
(f̂i∗ −f

eq
i∗ )(n,j)+3f ∗

i v̄i (n,j) · ci
]

= −χj i

(
1− 1

τ

)∑

p=0

∑

m=0

hm+pDp(0, qj ici ·∇)(f
(m)
i∗ −f

eq,(m)

i∗ )(tn,xj i )

−3χj if
∗
i (hφ(tn,xj i ))−

∑

p=0

∑

m=0

hm+pDp(0, qj ici ·∇)um(tn,xj i ) · ci ,

and up to third order explicitly

θ̂i =−3hχj if
∗
i /qj i (φ−u1) · ci +h2(1−2qj i )(ci ·∇)f

(1)
i +O(h3)

Combined with the expansion (22) of the bounce back part in the FH
condition, we get

h

(
6−3

χj i

qj i

)
f ∗

i /qj i (φ−u1) · ci −6h2f ∗
i u2 · ci =O(h3)
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from which we conclude u1 =φ and u2 =0 on ∂�.
However, in the case qj i = 0 the method FH introduces additional

conditions at nodes with two opposing incoming directions which gener-
ally cannot be satisfied with a smooth coefficient f

(2)
i . Thus our regular

expansion breaks down at second order which indicates that pressure will
be inconsistent and velocity only first order accurate.

To derive the additional condition, we consider opposing incoming
directions ci and ci∗ =−ci in the case qj i =0

f̂i (n+1,j)= f̂i∗(n,j)+6f ∗
i hφ · ci , f̂i∗(n+1,j)= f̂i (n,j)+6f ∗

i hφ · ci∗ ,

Adding the equations, we obtain

f̂i (n+1,j)+ f̂i∗(n+1,j)= f̂i (n,j)+ f̂i∗(n,j)

so that the quantity f̂i (n,j) + f̂i∗(n,j) = C is constant in time. Inserting
the expansion into this relation and expanding around (tn,xj i ), we find in
second order

∂

∂t
[ρ2 + 3

2
(3(u1 · c)2 −|u1|2)− τ(ci ·∇)(u1 · ci )]=0

which is, in general, incompatible with the fact that ρ2/3,u1 solve the
Navier–Stokes problem (1).
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